108 research outputs found

    Investigation of nucleation and crystal growth kinetics of nickel manganese oxalates

    Get PDF
    The nucleation and the crystal growth rates of mixed nickel manganese oxalates have been determined from the changes of the ionic concentration of the solution and the crystal size distribution during the precipitation process within a supersaturation range 0–0.1 M. Thermodynamic solubility calculations have been used to identify the different species contributing the precipitation reaction and for estimation of the thermodynamic constant. Experimental data show that the nucleation rate of mixed nickel manganese oxalate in this supersaturation range is consistent with a primary heterogeneous mechanism and was found to obey to an exponential law. The crystal growth rates indicate a surface-integration-controlled mechanism with a first-order law with respect to the supersaturation

    Can bioactivity be tested in vitro with SBF solution ?

    Get PDF
    A large part of the scientific community has accepted the paradigm that a simulated body solution (SBF) can be used to test the bioactivity of a material. This is exemplified by the rapidly increasing number of publications using this test. The aim of this document is to demonstrate that (i) there is presently not enough scientific data to support this assumption, and(ii) even though the assumption was valid, the way the test is generally conducted leaves room for improvement. Theoretical arguments and facts supporting these statements are provided, together with possible improvements of the proposed bioactivity test

    Preparation and properties of potassium-vermiculite films

    Get PDF
    Flexible films of vermiculite have been prepared from aqueous suspensions after swelling by cation exchange and mechanical delamination. Two different swelling cations, lithium and butylammonium, have been investigated. The degree of swelling and delamination during the suspension preparation was characterized by the percentage of water reabsorbed by dried clays and the adsorption of methylene blue. The vermiculite saturated with lithium ions is more easily delaminated but contains more water than those saturated with butylammonium. Good quality coherent flexible films could be prepared from both the lithium and butylammonium exchanged vermiculites but the high percentage of water found in the films has a detrimental effect on their dielectric properties. To reduce the amount of water in the exchanged vermiculites a second ion exchange with potassium, a less hydratable cation, was investigated. Films prepared after exchange with potassium showed significant improvements in their dielectric properties, with a dielectric constant ∈ around 10 and a dissipation factor tan δ around 0.06 at 25 °C and a frequency of 1 kH

    Preparation and characterization of dense nanohydroxyapatite/PLLA composites

    Get PDF
    Synthetic bone graft substitutes based on PLLA have been largely studied during the past decade. PLLA/hydroxyapatite composites appear as promising materials for large bone defect healing. In this study dense PLLA/nano-hydroxyapatite composites were prepared by hot pressing. Dense samples were investigated rather than porous scaffolds, in order to shed light on possible correlations between intrinsic mechanical properties and nano-hydroxyapatite concentration. Hydroxyapatite deagglomerated by wet attritionmilling, and further dispersed into chloroform was used (median diameter=80 nm). Particle size distribution measurements and transmission electron microscopy show evidence that particle size and dispersion are maintained throughout the successive steps of composite processing. Mechanical properties were tested (uni-axial and diametral compression tests) as a function of nano-hydroxyapatite content. Increasing concentrations of nano-hydroxyapatite (0, 25 and 50 wt.%) increase the Young's modulus and the mechanical strength of the composite; at the same time, the failure mechanism of the material changes from plastic to brittle. Young's modulus over 6 GPa and uniaxial compressive strength over 100 MPa have been achieved. These values expressed in terms of intrinsic tensile and shear strengths indicate that 50 wt.% nano-hydroxyapatite containing samples develop properties comparable to those of cortical bone. PLLA/nano-hydroxyapatite composites are thus promising candidates to develop bioresorbable porous bone substitutes showing superior mechanical performance

    Intravital Imaging Reveals Distinct Dynamics for Natural Killer and CD8+ T Cells during Tumor Regression

    Get PDF
    SummaryRecognition of NKG2D ligands by natural killer (NK) cells plays an important role during antitumoral responses. To address how NKG2D engagement affects intratumoral NK cell dynamics, we performed intravital microscopy in a Rae-1β-expressing solid tumor. This NKG2D ligand drove NK cell accumulation, activation, and motility within the tumor. NK cells established mainly dynamic contacts with their targets during tumor regression. In sharp contrast, cytotoxic T lymphocytes (CTLs) formed stable contacts in tumors expressing their cognate antigen. Similar behaviors were observed during effector functions in lymph nodes. In vitro, contacts between NK cells and their targets were cytotoxic but did not elicit sustained calcium influx nor adhesion, whereas CTL contact stability was critically dependent on extracellular calcium entry. Altogether, our results offer mechanistic insight into how NK cells and CTLs can exert cytotoxic activity with remarkably different contact dynamics

    A comparative study of simulated body fluids in the presence of proteins

    Get PDF
    Simulated body fluid (SBF) is widely used as part of an in vitro method to evaluate implant materials such as their apatite forming ability (AFA), a typical indication of potential bone-bonding ability in vivo. We report the use of carbonate-buffered SBFs as potential solutions for implant evaluation and the effect of proteins, represented by bovine serum albumin (BSA) in SBFs on the nucleation and growth of hydroxyapatite (HA). These solutions are buffered by the thermodynamic equilibrium with 5% CO2 in an incubator, and result in a deposition of carbonated HA. Using several titanium-based surfaces, these solutions were studied in comparison with the widely-used SBF (ISO 23317). The presence of BSA strongly inhibited the formation of HA in traditional SBF, while HA can still be observed in carbonate-buffered SBFs. A kinetic study reveals that the inhibitory effect is concentration dependent with 0.1g/L and 1g/L of BSA having little effect on HA growth but a complete inhibition of HA formation at 5g/L of BSA, as tested using NaOH treated titanium with a known positive AFA. The decrease in solution pH and free calcium concentrations in SBFs due to the addition of BSA is not significant, suggesting other causes for the strong inhibitory effect

    A thermodynamic solution model for calcium carbonate: Towards an understanding of multi-equilibria precipitation pathways

    Get PDF
    Thermodynamic solubility calculations are normally only related to thermodynamic equilibria in solution. In this paper, we extend the use of such solubility calculations to help elucidate possible precipitation reaction pathways during the entire reaction. We also estimate the interfacial energy of particles using only solubility data by a modification of Mersmann’s approach. We have carried this out by considering precipitation reactions as a succession of small quasi-equilibrium states. Thus possible equilibrium precipitation pathways can be evaluated by calculating the evolution of surface charge, particle size and/or interfacial energy during the ongoing reaction. The approach includes the use of the Kelvin’s law to express the influence of particle size on the solubility constant of precipitates, the use of Nernst’s law to calculate surface potentials from solubility calculations and relate this to experimentally measured zeta potentials. Calcium carbonate precipitation and zeta potential measurements of well characterised high purity calcite have been used as a model system to validate the calculated values. The clarification of the change in zeta potential on titration illustrates the power of this approach as a tool for reaction pathway prediction and hence knowledge based tailoring of precipitation reactions

    Radiative heating rates profiles associated with a springtime case of Bodélé and Sudan dust transport over West Africa

    Get PDF
    International audienceThe radiative heating rate due to mineral dust over West Africa is investigated using the radiative code STREAMER, as well as remote sensing and in situ observations gathered during the African Monsoon Multidisciplinary Analysis Special Observing Period (AMMA SOP). We focus on two days (13 and 14 June 2006) of an intense and long lasting episode of dust being lifted in remote sources in Chad and Sudan and transported across West Africa in the African easterly jet region, during which airborne operations were conducted at the regional scale, from the southern fringes of the Sahara to the Gulf of Guinea. Profiles of heating rates are computed from airborne LEANDRE 2 (Lidar Embarqué pour l'étude de l'Atmosphère: Nuages Dynamique, Rayonnement et cycle de l'Eau) and space-borne CALIOP (Cloud Aerosol Lidar and Infrared Pathfinder Satellite Observations) lidar observations using two mineral dust model constrained by airborne in situ data and ground-based sunphotometer obtained during the campaign. Complementary spaceborne observations (from the Moderate-resolution Imaging Spectroradiometer-MODIS) and in-situ observations such as dropsondes are also used to take into account the infrared contribution of the water vapour. We investigate the variability of the heating rate on the vertical within a dust plume, as well as the contribution of both shortwave and longwave radiation to the heating rate and the radiative heating rate profiles of dust during daytime and nighttime. The sensitivity of the so-derived heating rate is also analyzed for some key variables for which the associated uncertainties may be large. During daytime, the warming associated with the presence of dust was found to be between 1.5 K day−1 and 4 K day−1, on average, depending on altitude and latitude. Strong warming (i.e. heating rates as high as 8 K day−1) was also observed locally in some limited part of the dust plumes. The uncertainty on the heating rate retrievals in the optically thickest part of the dust plume was estimated to be between 0.5 and 1.4 K day−1. During nighttime much smaller values of heating/cooling are retrieved (less than ±1 K day−1). Furthermore, cooling is observed as the result of the longwave forcing in the dust layer, while warming is observed below the dust layer, in the monsoon layer

    Contribution of Aggregation to the Growth Mechanism of Seeded Calcium Carbonate Precipitation in the Presence of Polyacrylic Acid

    Get PDF
    Our work investigates the precipitation mechanism of a seeded calcium carbonate reaction, by using cryogenic TEM to observe the early stages of the reaction. The early precipitation of a hydrated phase is proposed as an intermediate phase before transformation into calcite. Thermodynamic modeling in conjunction with pH, surface potential measurements, and colloidal stability modeling demonstrate that calcite growth is dominated by agglomeration. This is in agreement with the cryogenic TEM observations, which suggest oriented attachment dominates early aggregation. The final stage of the reaction is described by a ripening mechanism that is significantly inhibited when high concentrations of polyacrylic acid (PAA) are used. The different concentrations of PAA lead to significant differences in the final particle substructure observed using cross section TEM. At low PAA concentrations, single crystal particles result, coherent with the proposed early oriented attachment mechanism and interfacial energy calculations. A core shell model is proposed for high PAA concentrations, whereas internal ripening of nanosized pores has been observed for low PAA concentrations, suggesting trapped solvent during the rapid initial particle formation at the relatively high supersaturations (S ) 30) investigated

    Control of morphology and nanostructure of copper and cobalt oxalates: Effect of complexing ions, polymeric additives and molecular weight

    Get PDF
    Precipitated oxalates are often nanostructured and can be used as precursors for nanostructured oxides for different applications. The modification of the particle shape and nanostructures of both copper and cobalt oxalates has been demonstrated using polymeric additives or complexing counter-ions. In the case of cobalt oxalate the characteristic elongated rod particle shape (axial ratio of 10) can be modified by using polymethymethacrylate (PMMA) to produce particles with lower axial ratios of 2, through cubes all the way to platelets (axial ratio 0.2). The PMMA inhibits the growth of the particles along the [101] direction more and more strongly as the concentration of the polymer increases. The crystallite size from XRD line broadening is not modified by the PMMA indicating that the PMMA does not influence the nucleation and growth but modifies the aggregation kinetics. Copper oxalates precipitated in the presence of different cellulose derived polymers with different molecular weights and functional groups (methyl and propyl) showed sensitivity to both molecular weight and functional group. Higher molecular weights did not influence the copper oxalate particle shape, whereas methyl cellulose gave elongated particles and propyl celluloses gave platelet like particles. Copper oxalate precipitated in the presence of acetate counter ions gave platelets with an axial ratio of 0.15 compared to the cushion-like morphology (axial ratio 0.5). The primary crystallites were more elongated along the [001] direction in the presence of acetate, modifying the proportion of the hydrophobic and hydrophilic surfaces and hence influencing the aggregation kinetics and particle shape. The copper and cobalt oxalate particle formation seems to be dominated by the primary particle aggregation with the different additives interacting specifically with different crystallographic faces of the primary particles. By tuning this interaction particles with different shapes and substructures can be formed
    corecore